3.352 \(\int \sqrt{a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=320 \[ \frac{2 \sqrt{a+b} (B (a-b)+A b) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{b d}-\frac{2 A \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}-\frac{2 B (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b d} \]

[Out]

(-2*(a - b)*Sqrt[a + b]*B*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)
]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) + (2*Sqrt[a + b]*(A*b +
(a - b)*B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 -
Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) - (2*A*Sqrt[a + b]*Cot[c + d*x]*Ellipti
cPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a +
 b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d

________________________________________________________________________________________

Rubi [A]  time = 0.290496, antiderivative size = 320, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3916, 3784, 4005, 3832, 4004} \[ \frac{2 \sqrt{a+b} (B (a-b)+A b) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b d}-\frac{2 A \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}-\frac{2 B (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*B*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)
]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) + (2*Sqrt[a + b]*(A*b +
(a - b)*B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 -
Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) - (2*A*Sqrt[a + b]*Cot[c + d*x]*Ellipti
cPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a +
 b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d

Rule 3916

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[a*c,
Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Int[(Csc[e + f*x]*(b*c + a*d + b*d*Csc[e + f*x]))/Sqrt[a + b*Csc[e +
f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \sqrt{a+b \sec (c+d x)} (A+B \sec (c+d x)) \, dx &=(a A) \int \frac{1}{\sqrt{a+b \sec (c+d x)}} \, dx+\int \frac{\sec (c+d x) (A b+a B+b B \sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=-\frac{2 A \sqrt{a+b} \cot (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{d}+(b B) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx+(A b+(a-b) B) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=-\frac{2 (a-b) \sqrt{a+b} B \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{b d}+\frac{2 \sqrt{a+b} (A b+(a-b) B) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{b d}-\frac{2 A \sqrt{a+b} \cot (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{d}\\ \end{align*}

Mathematica [C]  time = 17.8871, size = 913, normalized size = 2.85 \[ \frac{2 B \cos (c+d x) \sqrt{a+b \sec (c+d x)} (A+B \sec (c+d x)) \sin (c+d x)}{d (B+A \cos (c+d x))}+\frac{2 \sqrt{a+b \sec (c+d x)} (A+B \sec (c+d x)) \left (a \sqrt{\frac{b-a}{a+b}} B \tan ^5\left (\frac{1}{2} (c+d x)\right )-b \sqrt{\frac{b-a}{a+b}} B \tan ^5\left (\frac{1}{2} (c+d x)\right )-2 a \sqrt{\frac{b-a}{a+b}} B \tan ^3\left (\frac{1}{2} (c+d x)\right )+2 i a A \Pi \left (-\frac{a+b}{a-b};i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{a+b}} \tan ^2\left (\frac{1}{2} (c+d x)\right )+a \sqrt{\frac{b-a}{a+b}} B \tan \left (\frac{1}{2} (c+d x)\right )+b \sqrt{\frac{b-a}{a+b}} B \tan \left (\frac{1}{2} (c+d x)\right )-i (a-b) B E\left (i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )+1\right ) \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{a+b}}-i (a-b) (A-B) \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right ),\frac{a+b}{a-b}\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )+1\right ) \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{a+b}}+2 i a A \Pi \left (-\frac{a+b}{a-b};i \sinh ^{-1}\left (\sqrt{\frac{b-a}{a+b}} \tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a+b}{a-b}\right ) \sqrt{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{a+b}}\right )}{\sqrt{\frac{b-a}{a+b}} d \sqrt{b+a \cos (c+d x)} (B+A \cos (c+d x)) \sec ^{\frac{3}{2}}(c+d x) \sqrt{\frac{1}{1-\tan ^2\left (\frac{1}{2} (c+d x)\right )}} \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )-1\right ) \left (\tan ^2\left (\frac{1}{2} (c+d x)\right )+1\right )^{3/2} \sqrt{\frac{-a \tan ^2\left (\frac{1}{2} (c+d x)\right )+b \tan ^2\left (\frac{1}{2} (c+d x)\right )+a+b}{\tan ^2\left (\frac{1}{2} (c+d x)\right )+1}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(2*B*Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x])*Sin[c + d*x])/(d*(B + A*Cos[c + d*x])) + (2*Sq
rt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x])*(a*Sqrt[(-a + b)/(a + b)]*B*Tan[(c + d*x)/2] + b*Sqrt[(-a + b)/(a
+ b)]*B*Tan[(c + d*x)/2] - 2*a*Sqrt[(-a + b)/(a + b)]*B*Tan[(c + d*x)/2]^3 + a*Sqrt[(-a + b)/(a + b)]*B*Tan[(c
 + d*x)/2]^5 - b*Sqrt[(-a + b)/(a + b)]*B*Tan[(c + d*x)/2]^5 + (2*I)*a*A*EllipticPi[-((a + b)/(a - b)), I*ArcS
inh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Ta
n[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (2*I)*a*A*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-
a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a +
b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - I*(a - b)*B*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a +
 b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a
*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - I*(a - b)*(A - B)*EllipticF[I*ArcSinh[Sqrt[(-a + b)/(a
+ b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b -
a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(Sqrt[(-a + b)/(a + b)]*d*Sqrt[b + a*Cos[c + d*x]]*(B
+ A*Cos[c + d*x])*Sec[c + d*x]^(3/2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(-1 + Tan[(c + d*x)/2]^2)*(1 + Tan[(c
 + d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)])

________________________________________________________________________________________

Maple [B]  time = 0.403, size = 1372, normalized size = 4.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x)

[Out]

2/d*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(cos(d*x+c)+1)^2*(-1+cos(d*x+c))^2*(A*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(
(a-b)/(a+b))^(1/2))*a-A*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b-2*A*cos(d*x+c)*(cos(d*x+c)/(cos(
d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticPi((-1+cos(d*x+c))/sin(d*x
+c),-1,((a-b)/(a+b))^(1/2))*a-B*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a-B*cos(d*x+c)*(cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/si
n(d*x+c),((a-b)/(a+b))^(1/2))*b+B*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a+B*cos(d*x+c)*(cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/
sin(d*x+c),((a-b)/(a+b))^(1/2))*b+A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a-A*(cos(d*x+c)/(cos(d*x+c)+1))^(
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a
+b))^(1/2))*b-2*A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)
*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a-B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a-
B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticF((-1+c
os(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b+B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a+B*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a
+b))^(1/2))*b*sin(d*x+c)-B*cos(d*x+c)^2*a+B*cos(d*x+c)*a-B*cos(d*x+c)*b+B*b)/sin(d*x+c)^5/(b+a*cos(d*x+c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + B \sec{\left (c + d x \right )}\right ) \sqrt{a + b \sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a), x)